

Rev. 09/2009

SELF-CLEANING FILTER

Rev. 09/2009

SELF-CLEANING FILTER

PRODUCTION RANGE

Code	Connections	Standard Mesh [µm]	Filter surface [cm²]	Size	Kv [m³/h]
126.03.10	THREADED FF UNI-EN-ISO 228	100	52,28	3/8″	1,80
126.04.10	THREADED FF UNI-EN-ISO 228	100	52,28	1/2″	3,10
126.05.10	THREADED FF UNI-EN-ISO 228	100	68,14	3/4"	5,80
126.06.10	THREADED FF UNI-EN-ISO 228	100	68,14	1″	8,55
126.07.10	THREADED FF UNI-EN-ISO 228	100	128,58	1" 1/4	14,85
126.08.10	THREADED FF UNI-EN-ISO 228	100	173,28	1″ 1/2	24,40
126.09.10	THREADED FF UNI-EN-ISO 228	100	173,28	2"	26,10
126.10.10	THREADED FF UNI-EN-ISO 228	100	764,93	2" 1/2	107,80
126.11.10	THREADED FF UNI-EN-ISO 228	100	764,93	3"	120,20
126.13.10	THREADED FF UNI-EN-ISO 228	100	764,93	4"	129,00

DESCRIPTION

The **RBM self-cleaning filters** are ideal to solve problems resulting from pollution due to suspended particles in the systems and to protect equipment at the end of the circuit. The range of filters available is suitable for small, medium-sized and large systems.

OPERATION

The fluid is forced to flow through the filter cartridge mesh where it is cleaned and then goes over towards the exit.

The body of the appliance is made of a copper alloy (brass) which performs a bactericidal action when the water remains in the filter for a long time.

The impurities caught by the filter are accumulated in the bottom of the filter and remain there until the discharge valve opens and expels them.

USE

The **RBM self-cleaning filters** are used mainly in hydraulic systems where the primary fluid is hot or cold water. They can be inserted in flanged systems.

The use of self-cleaning filters on heating and air-conditioning systems

prevents the formation of sludge resulting from the separation of the mineral salts present in water coming from thermal fluid systems and in recirculation water.

INSTALLATION

The filter must be installed with the **impurity discharge valve directed downwards** as indicated by the **direction arrow on the filter body**.

For further information, please refer to page 9 of this data sheet.

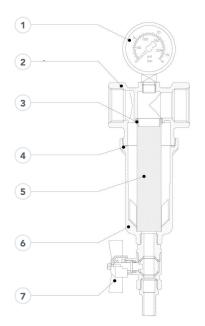
MAINTENANCE

The filtering cartridge is made of AISI 304 stainless steel, can be regenerated and also replaced for maintenance purposes; it can also be replaced with another cartridge with a different filtering size.

The filter keeps a high performance even when the clogging reaches a level of 50%. Above this level, it needs cleaning. -

The RBM self-cleaning filters must undergo a programmed ordinary maintenance (filtering mesh replacement) approximately every 6 months.

(please refer to page 9 of this data sheet for further information).


CONSTRUCTION CHARACTERISTICS

Body	Nickel-plated brass CW 617N UNI EN 12165
Filter holder	Nickel-plated brass CW 617N UNI EN 12165
Filter	AISI 304 stainless steel (UNI 6900-71)
Seals	Nitrile
Threaded connections	FF UNI-EN-ISO 228

TECHNICAL CHARACTERISTICS

Max. operating pressure	16 bar (1600 KPa)
Maximum operating temperature	100 °C (water)
Used fluid	water
Standard filtration	100 µm
Available filtering degree	100 μm - 300 μm - 800 μm
Pressure gauge scale	016 bar

STRUCTURAL COMPONENTS

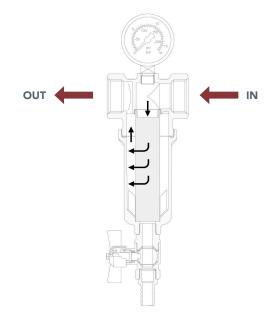
1 Pressure gauge
2 Filter body
3 Seal ring
4 O-ring
5 Filtering cartridge
6 Self-cleaning holder
7 Valve assembly

The **RBM self-cleaning filter** is made up of the following components:

- Filter holder with contamination discharge/drain valve;
- Filtering cartridge made of AISI 304 steel having the following characteristics:
- Reinforced, for high pressure operation;

- Filtering surface with a size corresponding to double the used DN section (in order to guarantee a higher cleaning performance);
 Standard filtration degree: 100 micron; (300 and 800 micron filter
- cartridge available as an accessory).
- Pressure gauge (scale 0...16 bar) for checking inlet pressure and filter obstruction.

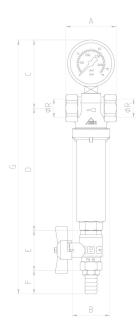
OPERATION PRINCIPLE


The fluid follows a set course: it is forced through the filter cartridge mesh where it is cleaned and then channelled to the exit.

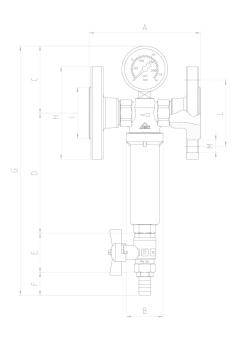
Impurities caught by the filter are accumulated on the bottom of the filter until the discharge valve opens and impurities are expelled.

During this operation the outgoing liquid drags with it the impurities caught in the filter cartridge mesh and cleans its passage sections.

The pressure gauge located on the self-cleaning filter shows the input pressure and makes it possible to check if the filter cartridge is obstructed.


An obstruction may be present when the pressure loss indicated on the pressure gauge during use does not correspond to the value found during similar measurements taken under the same conditions.

Scheme of the water passage inside the filter

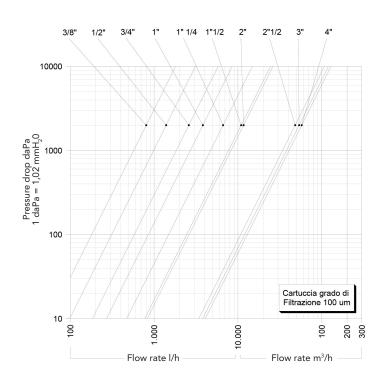

DIMENSIONAL CHARACTERISTICS

FF THREADED SELF-CLEANING FILTER

Size (R)	A [mm]	B [mm]	C [mm]	D [mm]	E [mm]	F [mm]	G [mm]
3/8"	50	41,5	82	133	45	25	285
1/2"	56	41,5	82	136	45	25	288
3/4"	67	47	85	132	45	25	287
1″	80	57	88	137	45	25	295
1" 1/4	92	68,5	93	169	52	29	343
1″ 1/2	110	79	96	179	52	29	356
2"	110	79	102	179	52	29	362
2" 1/2	180	186	130	377	61	35	603
3″	188	186	130	377	61	35	603
4"	202	186	130	377	61	35	603

FLANGED SELF-CLEANING FILTER

PN 6 FLANGED SELF-CLEANING FILTER


	DN	A [mm]	B [mm]	C [mm]	D [mm]	E [mm]	F [mm]	G [mm]	H [mm]	l [mm]	L [mm]	M [mm]	No. of holes
10	3/8″	98	41,5	82	133	45	25	285	75	35	50	11	4
15	1/2"	104	41,5	82	136	45	25	288	80	40	55	11	4
20	3/4"	115	47	85	132	45	25	287	90	50	65	11	4
25	1″	134	57	88	137	45	25	295	100	60	75	12	4
32	1″ 1/4	152	68,5	93	169	52	29	343	120	72	90	14	4
40	1″ 1/2	170	79	96	179	52	29	356	130	82	100	14	4
50	2″	172	79	102	179	52	29	362	140	91	110	14	4
65	2" 1/2	248	186	130	377	61	35	603	160	111	130	14	4
80	3″	260	186	130	377	61	35	603	190	127	150	18	4
100	4″	274	186	130	377	61	35	603	210	147	170	18	4

PN 16 FLANGED SELF-CLEANING FILTER

	DN	A [mm]	B [mm]	C [mm]	D [mm]	E [mm]	F [mm]	G [mm]	H [mm]	l [mm]	L [mm]	M [mm]	No. of holes
10	3/8"	112	41,5	82	133	45	25	285	90	40	60	14	4
15	1/2"	118	41,5	82	136	45	25	288	95	45	65	14	4
20	3/4"	133	47	85	132	45	25	287	105	58	75	14	4
25	1″	146	57	88	137	45	25	295	115	68	85	14	4
32	1″ 1/4	164	68,5	93	169	52	29	343	140	78	100	18	4
40	1″ 1/2	182	79	96	179	52	29	356	150	88	110	18	4
50	2"	186	79	102	179	52	29	362	165	102	125	18	4
65	2" 1/2	260	186	130	377	61	35	603	185	122	145	18	4
80	3″	276	186	130	377	61	35	603	200	138	160	18	8
100	4″	290	186	130	377	61	35	603	220	158	180	18	8

FLUID DYNAMIC CHARACTERISTICS

PRESSURE DROP CHART

3/8" 3/4" 1" 1/4 1"1/2 2" 2"1/2 3" 1/2' 10000 Pressure drop daPa 1 daPa = $1,02 \text{ mmH}_2^0$ 1000 100 Cartuccia grado di Filtrazione 300 um 10 10.000 8 100 200 300 000.1 Flow rate I/h Flow rate m³/h

Analytical procedure for determining the filter size for liquids with $\rho \, {\simeq} \, 1 \; kg/dm^3$

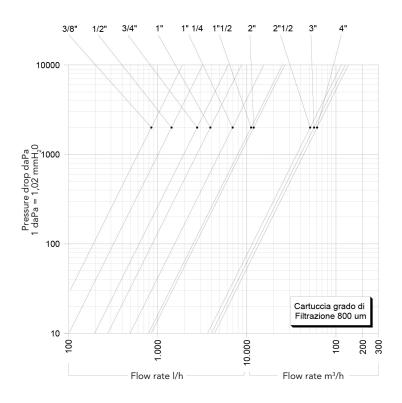
$$Kv s = Q * \left(\frac{10000}{\Delta P}\right)^{0.5}$$
 suitable for water at a temperature from 0 to 30 °C

Kvs correction for fluids with ρ different from 1 kg/dm 3

$$Kvs' = Kvs * \sqrt{\rho'}$$

Analytical procedure for determining the pressure drop for liquids with $\rho \simeq 1 \ kg/dm^3$

$$\Delta P = \left(\frac{Q}{Kvs}\right)^2 \times 10.000$$
 suitable for water at a temperature from 0 to 30 °C

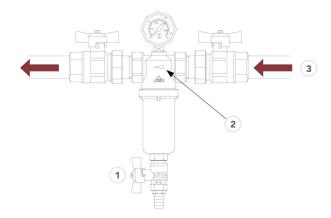

Correction of ΔP for fluids with ρ different from 1 kg/dm³

 $\Delta \mathsf{P'} = \Delta \mathsf{P} \ge \rho'$

LEGEND

- △P pressure drop in daPa (1daPa=10Pa)
- operation Q flow rate in m³/h
- Kvs hydraulic characteristic value in m³/h (1m³/h=1.000 l/h)
- ρ' density of the liquid in kg/dm³

PRESSURE DROP CHART



INDICATIONS FOR A QUICK CHOICE OF THE SELF-CLEANING FILTER

	FLOW RATE OF THE WATER FLOWING THROUGH [I/h]								
Size	100 µr	100 µm filter		n filter	יון 800	800 µm filter			
	with ∆P 1.000 Pa	with ∆P 10.000 Pa	with ∆P 1.000 Pa	with ∆P 10.000 Pa	with ∆P 1.000 Pa	with ∆P 10.000 Pa			
3/8"	180	570	185	600	190	600			
1/2"	310	980	315	990	320	1.010			
3/4"	580	1.840	600	1.900	620	1.950			
1″	860	2.700	865	2.720	890	2.810			
1″ 1/4	1.490	4.700	1.500	4.740	1.550	4.900			
1″ 1/2	2.440	7.700	2.460	7.850	2.500	7.910			
2″	2.600	8.250	2.610	8.250	2.660	8.350			
2″ 1/2	10.780	34.100	11.010	34.500	11.500	36.000			
3″	12.000	38.000	12.200	38.600	12.700	40.000			
4″	12.900	40.800	13.400	42.500	13.500	42.700			

* The flow rate values indicated have been obtained with a perfectly clean non-obstructed filtering cartridge. The table is only a quick general reference which makes it possible to match the chosen component with a given system size.

The values indicated in the table are not binding and do not represent any performance limits of the components.

Self-cleaning filter installation scheme inside a hydraulic circuit The picture shows how to install an **RBM self-cleaning filter** inside a hydraulic circuit.

The filter must be installed with the **impurity discharge valve directed downwards**, so that suspended particles are deposited on the bottom.

The filter must be inserted inside the circuit according to the **direction arrow** printed on the filter body. This arrow shows the direction of the circuit flow.

When you develop the system, take into consideration that a shut-off valve should be placed upstream of the filter; this will facilitate maintenance and cleaning operations.

If flanged systems are inserted, it is possible to use a pair of threaded $\ensuremath{\text{PN6}}$ or $\ensuremath{\text{PN}}$ flanges.

- 1 Impurity discharge valve
- 2 Direction arrow
- 3 Water flow direction

MAINTENANCE

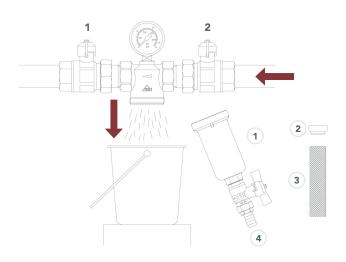
WASHING OF THE FILTER CARTRIDGE

In order to wash the filter cartridge, carry out the fluid discharge by opening the discharge valve with drain connection

N.B.: During this operation, shut-off valve 1 and shut-off valve 2 must be open.

REPLACE THE FILTERING CARTRIDGE

PRECAUTIONS: Install shut-off valves (ball valves) in the operation area in order to make the normal maintenance of the filter possible (replace the filter cartridge every 6 months) and to avoid emptying the system. A shut-off valve can be installed also at the bottom of the filter.


If you want to insert flanged systems, you can use a pair of RBM PN 16 threaded flanges.

$\ensuremath{\text{N.B.}}$: It is not necessary to install the shut-off valves near the filter.

Two valves in a well delimited circuit tract are sufficient to avoid an excessive run-out of water which could cause environmental problems (erosion).

OPERATIONS

- Bring the containers which will contain the discharged water as near as possible;
- Close cock 1 and cock 2;
- Unscrew the holder (if the fluid circulating in the circuit has a high temperature, use suitable precaution and the protection measures to avoid direct contact with the fluid);
- Extract the used cartridge and replace it with a new one (filtering mesh available from **100** to **800** microns);
- Place the PTFE ring nut very carefully on the filter cartridge;
- Close the filter with the holder;
- Open the valve at the top of the filter again in order to open the hydraulic system.

- 1 Holder
- 2 PTFE ring nut
- 3 Cartridge to be replaced
- 4 Discharge with drain valve

ACCESSORIES

Product	Code	Size	DN				
	PN 16 THREADED FLANGE						
	120.04.00	1/2″	DN 15				
	120.05.00	3/4"	DN 20				
	120.06.00	1"	DN 25				
	120.07.00	1" 1/4	DN 32				
	120.08.00	1" 1/2	DN 40				
	120.09.00	2"	DN 50				
	120.10.00	2" 1/2	DN 65				
	120.11.00	3"	DN 80				
 THREADED FLANGE Body made of nickel-plated brass; Threaded connection M UNI-EN-ISO 228; 	120.13.00	4"	DN 100				

PN 6 THREADED FLANGE

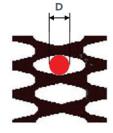
121.04.00	1/2"	DN 15
121.05.00	3/4"	DN 20
121.06.00	1″	DN 25
121.07.00	1" 1/4	DN 32
121.08.00	1" 1/2	DN 40
121.09.00	2"	DN 50
121.10.00	2" 1/2	DN 65
121.11.00	3"	DN 80
121.13.00	4"	DN 100

- Flanged connection UNI 2223 PN 16 DIN 2566 PN 16;
- Flanged connection UNI 2223 PN 6
- Maximum operating pressure (P_{max}): 16 bar;
- Maximum temperature: 150 °C

SPARE PARTS

CARTRIDGE OF THE SELF-CLEANING FILTER								
Product		Filter						
	Size	800 [µm]	300 [µm]	100 [µm] *	surface			
		Code	Code	Code	[cm²]			
	3/8″	1171.003	1071.013	1071.023	52,28			
	1/2"	1171.003	1071.013	1071.023	52,28			
	3/4"	1172.003	1172.013	1172.023	68,14			
	1"	1173.003	1173.013	1173.023	68,14			
	1" 1/4	1200.003	1200.013	1200.023	128,58			
	1" 1/2	1201.003	1201.013	1201.023	173,28			
	2"	1201.003	1201.013	1201.023	173,28			
CHOICE OF THE FILTER The choice of the filtering mesh is at the	2" 1/2	1215.003	1215.013	1215.023	764,93			
user's discretion. We can recommend the following: • 50-100-300-800 micron for drinking water	3″	1215.003	1215.013	1215.023	764,93			
 300 micron for well water 300 micron for diesel oil in general 100-300 micron for fuel gases 	4"	1215.003	1215.013	1215.023	764,93			
-	* Ctondard filtrat	ion dograd						

ARTRIDGE OF THE SELF-CLEANING FILTER


* Standard filtration degree

FURTHER INFORMATION

The filtering cartridge is the most important element of the filter. The filtering cartridge has a cylindrical body with diamond-shaped mesh made of AISI 304 stainless steel.

The number of meshes per cm^2 is an essential factor for a correct choice of the filter. Filtering cartridges differ from one another according to the number of meshes they have. The tighter the filter mesh, the more compact is the filter and therefore the higher the number of meshes per cm^2 the higher the filtering capacity of the filter. It is therefore necessary to know the size of the opening of each single mesh in order to understand how many meshes are present per cm^2 .

Next to each filtering cartridge there is a number expressed in micron $[1\mu = 0,001 \text{ mm}]$. This number refers to its filtering capacity and represents the diameter of the circle [D: see picture] inside the diamond-shaped mesh of the filtering cartridge. The higher the value expressed in micron, the wider the filter mesh and the lower the number of meshes per cm² (lower filtering capacity).

RBM spa reserves the right to improve and change the described products and related technical data at any moment and without prior notice: always refer to the instructions attached with the supplied components; this sheet is an aid, should the instructions be extremely schematic. Our technical office is always at your disposal for any doubt, problem or explanation.